
Binary Rewriting without Relocation Information
Technical report, University of Maryland, November 2010

Matthew Smithson Kapil Anand Aparna Kotha

Khaled Elwazeer Nathan Giles Rajeev Barua

Abstract
Binary rewriting softwares transform executables by main-
taining the original binary’s functionality, while improving
it in one or more metrics, such as runtime performance, en-
ergy use, memory use, security, and reliability.

Existing static binary rewriters are unable to rewrite bi-
naries that do not contain relocation information, which is
typically discarded by linkers unless specifically instructed
otherwise. Unfortunately, most deployed binaries lack such
information; hence they cannot be statically rewritten at all.

We present a new approach to binary rewriting capable
of rewriting binaries statically without relocation informa-
tion. This is the first technology that allows for application of
complex static transformations to any binary. This technol-
ogy extends the power of binary rewriting technology past
developers and into the hands of end-users.

This technology has been incorporated into a working
prototype known as SecondWrite, which has been used to
rewrite and apply optimizations to a subset of SPEC bench-
marks. Tests yielded reasonable overheads, with an average
speedup of 27% for non-optimized binaries, and an average
slowdown of 7% for optimized versions. Our tool can be
used as a platform for complex optimization and security
enhancements of any binary for the first time ever.

Categories and Subject Descriptors D.3.4 [Software]:
Processors—Compilers, Translator writing systems and
compiler generators

General Terms Performance, Theory

[Copyright notice will appear here once ’preprint’ option is removed.]

Keywords binary rewriting, relocation information, opti-
mization, instrumentation, disassembly, reverse engineering

1. Introduction
Binary rewriting is a promising technology that is finding
widespread application in new research ideas being pub-
lished. Researchers have proposed binary rewriting-based
methods for a variety of topics, including inter-procedural
optimization [12, 24, 28], security-policy enforcement [14],
preventing control-flow attacks [5, 27], cache optimiza-
tion [23], software caching [19], and distributed virtual ma-
chines for networked computers [31].

The reason for the great interest in research in binary
rewriting is that it offers many additional advantages over
a traditional compiler toolchain:

Whole-program Optimizations. Build systems for stat-
ically-compiled programs typically rely upon separate com-
pilation in order to minimize compile times, limiting the ef-
ficacy of any available compiler-based whole-program op-
timizations. In contrast, binary rewriters operate on pro-
grams after the compilation units have been merged together,
leaving them more naturally suited for performing whole-
program optimizations.

Transformation Coverage. Unlike compilers, binary
rewriters can transform statically linked library code, as well
as code originally written in assembly. 1

Transformation Reuse. Binary rewriters do not differen-
tiate between source language or compiler. It is thus more ef-
ficient to implement a code transformation once for a binary
rewriter, rather than repeatedly within various compilers.

Security Enforcement. A binary rewriter can be used by
an end-user to insert security checks into a binary compiled
by an untrusted source.

Source Code Requirement. Binary rewriting technology
can operate in environments where source code is unavail-
able, such as legacy, and third-party binaries.

1 Some compilers, including GCC, work around this limitation in some
cases by providing ’built-in’ versions for certain library functions.

Binary Rewriting without Relocation Information 1 2010/11/10

Additional Optimization. Binary rewriters can further
improve previously optimized binaries by applying opti-
mizations that were either missed or were unavailable during
the original compilation.

Platform-Aware Optimizations. Binaries compiled for
distribution are often targetted for a particular ISA, but are
rarely optimized for a particular processor. Binary rewrit-
ers can apply customized optimizations to take advantage
of processor-specific characteristics such as the availability
of additional instructions (such as multimedia extensions)
and knowledge about the memory hierarchy and processor
pipeline depths.

Consequent to the advantages of binary rewriting, a num-
ber of binary rewriters, disassemblers, and link-time opti-
mizers have been designed. Existing tools typically fall into
one of several categories: static rewriters, dynamic rewriters,
and minimally-invasive rewriters. A static binary rewriter
(like ours) rewrites the binary off-line, but requires reloca-
tion (and usually symbolic) information. A dynamic binary
rewriter rewrites the binary during its execution, but, in a
key advantage, does not need relocation or symbolic infor-
mation. Let us discuss each in turn.

Static binary rewriters [7–9, 12, 15, 16, 24, 28, 32, 34],
sometimes referred to as link-time optimizers, rewrite code
offline. Given their offline nature, they have the time to per-
form complex analysis and transformations. However, they
require relocation information in order to both identify code
regions and address locations. The identification of code re-
gions is required in order to ensure complete disassembly
of a binary. It is invalid to merely disassemble the entire
code segment, as compilers often embed data (such as jump
tables, alignment bytes, literal tables, and padding bytes)
throughout the code segment. The identification of address
locations is required in order to adjust for movement of the
address target during the rewriting process.

Minimally-invasive rewriters [2] do not require relocation
information. These tools maintain the original machine code
in place to the greatest extent possible. However, as a result,
these rewriters typically support only minimal transforma-
tions such as the insertion of ’trampolines’ to jump into and
out of instrumentation blocks [1] and peephole optimizations
affecting small sequences of instructions. Our goal is to pro-
vide a platform that is capable of complex whole-program
optimizations that can revise the code in any manner they
choose. Minimally invasive rewriters cannot do this.

Dynamic rewriters [1, 4, 6, 22, 25, 26, 30] are able to
rewrite without relocation information. These tools per-
form disassembly, analysis, and transformation at runtime,
at which point the identification of address locations and
code regions is trivial.

Unfortunately, dynamic rewriters tend to suffer from sig-
nificant runtime overhead, even when performing no trans-
formations because of the overhead of rewriting at run-time.
When performing complex transformations such as auto-

matic parallelization and inter-procedural optimizations, the
overhead is is likely to be prohibitive. As a result, dynamic
rewriters have thus far only been used for simple instrumen-
tation and peephole optimization. For example, some dy-
namic rewriters intercept the application’s execution at most
indirect control transfers in order to ensure that the target
has been rewritten. As a result, even without applying any
transformations, reported overheads range from 20% for Dy-
namoRIO [6] to 54% for PIN [22]. Nevertheless, dynamic
rewriters have seen some commercial success such as in the
use of DynamoRIO by Determina Inc. for its security checks
on control-flow, because of their applicability to arbitrary bi-
naries without relocation information. However it is unlikely
that dynamic rewriters will ever be able to perform complex
transformations of the types we want without incurring pro-
hibitive run-time overheads.

Consequent to the limitations of dynamic and minimally-
invasive rewriters, the promise of a successful static rewriter
is as great as ever. However, the reality of binary rewrit-
ing has been far more disappointing. Despite the tremendous
potential, static binary rewriting is not in widespread com-
mercial use today. Binary rewriters are not included in most
compilation toolchains as a final step. Most end-users are
likewise not rewriting programs, since widely used commer-
cial binary rewriters do not exist.

The reason for the lack of success of static rewriting tech-
nology is clear: all existing static binary rewriters require
relocation information. 2 3 Unfortunately this information
is discarded by linkers by default. As a result, binaries do
not contain this information unless it is explicitly included
by the developer. We surveyed ten widely used commer-
cial binaries: Adobe Acrobat Reader, AOL Instant Messen-
ger, Corel Photo Album 6, Microsoft Word 2002, Microsoft
Powerpoint 2002, Post-It Software Notes Lite 3.1.1, Putty
0.58, QuickTime Player 6.5, Spybot Search & Destroy 1.4,
and TextPad 4.7.3. We found that none of these ten executa-
bles contained relocation or symbolic information. Hence,
these executables cannot be rewritten by any existing static
rewriter, making existing static rewriter use impractical.

Linkers typically do provide a way to retain relocation
information by using special command-line flags. 4 How-
ever, since only the original developers have access to the
object code, only they can request that this information be
retained. The end result is that only the original developers
can rewrite their binaries. Binary rewriting by end-users on
arbitrary binaries is impossible today.

We present the first static binary rewriting technology
ever that is capable of rewriting binaries without relocation

2 Unless otherwise specified, we exclude minimally-invasive rewriters when
referring to static binary rewriters
3 Relocation information includes ELF relocation entries or other equivalent
formats
4 For example, GCC’s ld linker provides the –emit-relocs flag to output
relocation information.

Binary Rewriting without Relocation Information 2 2010/11/10

information. This implies that, for the first time, an arbitrary
user will be able to statically rewrite any arbitrary binary.
Our technology supports unrestricted wholesale recompila-
tion of the binary, including instruction (re)selection, register
(re)allocation, and standard optimizations. Unlike dynamic
rewriters, our technology introduces reasonable runtime
overheads. Unlike minimally-invasive rewriters, our tech-
nology supports arbitrarily complex transformations such
as automatic parallelization. This technology provides un-
precedented power to end-users to rewrite their programs
to improve performance, energy use, memory consumption,
security, and reliability.

Our static binary rewriting technology has the following
advantages over existing static binary rewriters:

• Does not require relocation information. Existing bi-
nary rewriters require developers to retain relocation in-
formation inside the input binary. Our rewriter eliminates
this restriction, allowing anyone to rewrite any binary ex-
ecutable.

• Can be applied to legacy applications. Legacy binaries
cannot be rewritten by existing binary rewriters since vir-
tually all binaries lack relocation information. Moreover
recompilation from source is often not possible since
source code is often not readily available for legacy code.

• Can be used to enforce security on untrusted code.
Since existing static binary rewriters can only be used
with developer cooperation, it is not feasible to use them
to enforce security properties on code from untrusted
developers.

Our technology has been implemented in SecondWrite.
SecondWrite is a static binary rewriter which targets the x86
ISA and integrates into the LLVM [21] compiler infrastruc-
ture. Test results from rewritten SPEC 2006 benchmarks 5

confirm our technology to be a platform for static rewriting
of arbitrary binaries with reasonable runtime overhead.

2. Binary Rewriting Without Relocation
Information

At first glance it seems impossible to statically rewrite a bi-
nary without relocation information. After all, if even a sin-
gle branch in the program has an unknown target, it could
branch to anywhere; hence no instruction could be moved
from its current location, preventing rewriting altogether.
This thinking has gone unchallenged for two decades, pre-
venting the promise of binary rewriting from transforming
itself to a practical, widely-used commercial reality. We pro-
pose methods that will allow arbitrary binaries to be stati-
cally rewritten for the first time.

All binary rewriting technologies must overcome two
main challenges: relocating instructions and code discov-

5 With the exception of equake, which was taken from the SPEC OMP 2001
benchmark suite.

ery. This section examines each challenge, explains how tra-
ditional static rewriting technology overcomes those chal-
lenges, and presents solutions which do not require supple-
mental information.

2.1 Relocating Instructions
Certain instructions in a binary will contain operands which
reference other locations also within the binary. Load and
store instructions reference locations containing data. Branches
and calls reference locations containing other instructions.
During the rewriting process, the targets of these references
move around. A binary rewriter must account for this move-
ment. Rewriters must first identify the locations of these
references, which we refer to as address creation points
(ACPs), and secondly adjust the addresses to account for
any movement.

In some cases, the identification of ACP locations is triv-
ial. Consider direct control transfer instructions (CTIs), such
as direct branches and direct calls. For these instructions,
the ACP is found directly following the instruction opcode
in the binary. However, for indirect CTIs, such as an indi-
rect call, the ACP is decoupled from the opcode. The ACP
may exist in some remote location in the binary, where it is
passed through a variety of mechanisms (via registers, mem-
ory, function arguments, global variables, etc.) to the usage
site.

Thus, the identification of ACPs for indirect CTI is non-
trivial. To overcome this problem, assisted static rewriters
rely upon supplemental information. Often, this supplemen-
tal information comes in the form of static relocation en-
tries. Because absolute addresses are not computable until
the linking phase, the compiler will instead generate a relo-
cation entry wherever an absolute address is required. These
entries direct the linker to generate absolute addresses at cer-
tain locations within the binary. As a result, the set of re-
location entries reveals all of the absolute ACPs within the
binary. For those ISAs, such as Intel’s x86, which do not sup-
port PC-relative indirect addressing for CTI instructions, this
list of absolute ACPs is sufficiently comprehensive. Thus, to
account for instruction (and data) relocation, assisted static
rewriters can simply iterate across the list of relocation en-
tries, updating each ACP with the associated address in the
rewritten binary.

Our goal is binary rewriting without relocation entries.
Let us consider how that might be done. Without reloca-
tion entries, an initial approach would be to scan the binary
for instruction operands that appear to be addresses. Un-
fortunately, because a binary contains no information about
operand types, it is difficult to determine whether an operand
represents a constant data value or the address of an object.
Consider the following move instruction:

8200: mov $0x8900, %eax

Binary Rewriting without Relocation Information 3 2010/11/10

Assume that in the original binary, address 0x8900 cor-
responds to the base address of functino foo, and that func-
tion foo was subsequently rewritten to a different location.
It would be unsafe to modify the above move instructions’
operand to point to the new location of foo, unless we can
somehow prove that the operand actually represents an ad-
dress. If we did choose to update operand, but the operand
instead was representative of a data value (perhaps a loop
bound), then the correctness of the rewritten program would
be invalidated. On the otherhand, if we choose not to up-
date the operand, but it actually did represent the address
of foo (an indirect call operand), then program’s correct-
ness will also be invalidated, as the rewritten operand would
point to foo’s original (now incorrect) location. Thus, in or-
der to take the same approach as assisted rewriters and up-
date ACPs statically, we must be able to definitively prove a
value to be an address and not a constant data value.

We handle indirect address translation by updating the
address usage point instead of the address creation point.
Unlike static ACP translation, this approach avoids the re-
quirement of definitively identifiying ACPs in the binary al-
together. Identification of indirect address usage points is
trivial, as these instructions are readily revealed by their op-
codes. In order to adust the address operands for these in-
structions, we introduce the notion of a translator.

Translators are comprised of code that is inserted directly
into the intermediate representation just prior to every indi-
rect CTI. Translators examine the indirect CTI operand and
provide an appropriate adjustment to effectively translate the
original address into the corresponding address in the rewrit-
ten binary.

Consider the following indirect call:

call *fp;

In the intermediate representation for the rewritten binary,
the indirect call would be prefaced with its associated call
translator. Consider the following example of a 2-entry call
translator. Larger target sets are accommodated by simply
adding additional cases.

if (fp == 0x8300):

fp_modified = &fwrite;

if (fp == 0x8400):

fp_modified = &fread;

call *fpmod;

To guarantee correctness, a translation must be provided
for every possible target of the indirect CTI. Before we dis-
cuss how these target sets are generated, it is significant to
first point out that the usage point translation approach al-
lows for inclusion of extraneous translations without sacri-
ficing correctness. Extraneous targets are those which the as-
sociated indirect CTI never actually targets. Assume in the
previous example that fread is not an actual target for fp. In
this case, including fread in the translator is useless, as that
particular translation will never be executed. However, the

presence of the fread translation does not jeopardize correct-
ness. This notion is important, because it allows us to con-
struct the target list for each CTI in a conservative manner.

We will leverage this feature by assuming, for now, that
an indirect CTI may target any valid location. This implies
that an indirect branch might target any block within its
containing function, and that an indirect call might target any
function in the program.

Clearly, usage point translation will introduce runtime
overheads unlike the static ACP translation approach. Ad-
ditionally, our the very conservative approach to indirect
CTI target set identification may further increase translation
times. Section 3 outlines techniques used to reduce these
overheads.

2.2 Relocating Data
The previous section examined how instruction references
can be adjusted to account for movement during rewriting
has been examined. However, the presented solution did not
address indirect data references. Our approach is to simply
avoid the issue by prohibiting movement of any data targets
during the rewriting process. This is realized by maintaining
the original data segments in the rewritten binary for subse-
quent loading to their original address locations. The orig-
inal code segment is also preserved in a similar fashion, as
it may contain embedded data. Note that this leads to some
duplication in that the original code segment will exist in the
rewritten binary alongside its functionally-equivalent rewrit-
ten copy.

2.3 Code Discovery
In addition to instruction relocation, binary rewriters must
overcome the challenge of identifying which portions of the
binary contain instructions. This process, which we refer to
as code discovery, is complicated by the fact that data is of-
ten embedded within the code segment. Data can appear in
the code segment for a variety of reasons, including jump ta-
bles, padding bytes, alignment bytes, and literal tables. Thus,
it cannot be assumed that the code segment is comprised
solely of instructions alone.

One code discovery algorithm, known as linear sweep [10,
16], marches through a region, disassembling each location
in a linear fashion. However, this algorithm will disassem-
ble past unconditional branch instructions. This can lead to
situations where the algorithm disassembles past an instruc-
tion and into a region of embedded data, (incorrectly) dis-
assembling the contents of the data region as if it contained
instructions.

A more appropriate code discovery algorithm for binary
rewriting is recursive traversal [10], which discovers code
by following only valid control flow edges. When a CTI is
encountered, recursive traversal continues discovery at the
CTI target locations, rather than at the subsequent file offset.
Unfortunately, the targets of indirect CTI are not readily

Binary Rewriting without Relocation Information 4 2010/11/10

identifiable statically. As a result, recursive traversal cannot
continue discovering code past these instructions.

Static rewriters are able to overcome this limitation of
recursive traversal by identifying indirect CTI targets and
restarting the discovery process at those locations. The pre-
vious section discussed relocation entries reveal address cre-
ation points in the binary. Note that the contents of these
ACPs reveal the set of indirect CTI targets in the binary.
Thus, assisted static rewriters can rely upon relocation en-
tries (or their equivalent) to guarantee complete code dis-
covery.

However, our goal is to perform complex transforma-
tions on arbitrary binaries, requiring complete code discov-
ery without access to relocation entries. Previously, we as-
sumed that indirect CTIs could target any location. We in-
dicated that this conservative approach might produce extra-
neous translations, but would not sacrifice correctness. How-
ever, the implications for disassembly are more complex.

Extraneous CTI targets implies that disassembly will oc-
cur at locations not necessarily guaranteed to be targets, and
which in some cases may actually not contain valid instruc-
tions at all. For these cases, we perform speculative recursive
traversal disassembly, where a portion of the binary is disas-
sembled as if contained instructions, even though that is not
guaranteed to be the case.

Other research has used speculative techniques for code
discovery in order to increase code coverage. However,
our method is the first to incorporate speculation in a way
that both guarantees 100% disassembly coverage while also
maintaining correctness. Suppose a portion of data embed-
ded within the code segment is mistakenly identified as an
indirect CTI target. It will be speculatively disassembled
as if it contained instructions. A translation would be in-
serted in the associated translator, pointing to the newly-
disassembled instructions in the IR. Because the target re-
gion was actually data, the original indirect CTI could not
have actually targetted the location. Thus, in the rewritten
binary, the translator will never redirect execution to the
speculatively-disassembled sequence. Additionally, as men-
tioned previously, we maintain a copy of the original code
segment in place in order to guarantee in order to guaran-
tee that any data references to this region will also maintain
their correctness.

The following sections will discuss mechanisms for re-
ducing the target set size for a given indirect CTI. How-
ever, it should be noted that the speculative disassembly
process can also help in this regard through the identifica-
tion of invalid speculative code sequences. Invalid sequences
are identified as violating certain characteristics of well-
formed code, such as containing control flow inconsistent
with known code (non-speculative) sequences. For example,
a speculative sequence containing a branch into the mid-
dle of a known code instruction would qualify as contain-
ing inconsistent control flow. Additionally, encountering an

invalid opcode would be sufficient to classify a sequence as
invalid. Once identified, invalid sequences are pruned from
the intermediate representation and removed from their as-
sociated translators.

2.4 Callbacks
Previously, data references were addressed by avoiding the
movement of data alltogether. In addition, indirect instruc-
tion references were handled by applying usage point trans-
lation. We have thus far assumed the address usage point to
lie within the binary, allowing for the insertion of a usage
point translator. However, situations do exist where the us-
age point lies outside the bounds of the input binary.

Function pointers may be passed as to libraries in order
to register the function to be called at a later time. During
the process of rewriting, unless additional information is
known about the library, it may be impossible to determine
whether the parameter is indeed a function pointer, or merely
a constant value coincidentally equivalent to some function’s
virtual address.

One way to guarantee correctness in these situations is
by leaving the parameter unmodified. In cases where the
parameter was a coincidental constant value, this solution
works because the original location will remain unchanged.
In cases where the parameter was in fact a function pointer,
control flow will return back to the original copy of the func-
tion, due to our restrictions on maintaining original copies
of the code and data segments in their original locations (see
section 2.2).

In order to guarantee correctness in the presence of call-
backs, we allow control flow to return to the original copy
of the code section. It is desirable to then re-transfer control
back to the associated rewritten function, as soon as possible.

For those functions definitively classified as code during
disassembly, we can replace the first instruction bytes with
an unconditional jump to the location of the rewritten copy
of the function. If the first few bytes of the function are not
large enough to contain the jump (that is, a non-instruction
byte is encountered), we can replace the first byte with a
software interrupt instruction, as is done some in binary
instrumentation tools [1]. The interrupt allows control flow
to jump to an interrupt handler, which performs the control
flow transfer to the rewritten copy of the function. Thus,
if control flow is ever directed to the original copy of a
function, it will immediately return to the rewritten copy.

There still remains the possibility of callbacks to specula-
tive functions. Because these functions have not been defini-
tively classified as code, it is unsafe to update their contents.
In these situations, if the library function calls the parame-
ter as a function pointer, control flow remains in the origi-
nal binary until it is returned back to the library, or a non-
speculative function is called.

Binary Rewriting without Relocation Information 5 2010/11/10

2.5 Limitations
Thus far, we have presented an approach for performing
static binary rewriting without relocation information. This
approach guarantess correctness of any rewritten binary,
aside from two limitations. First, like most static binary
rewriters, self-modifying code is not handled. However, this
is not a serious limitation since most modern operating sys-
tems, including Microsoft Windows [3], prohibit both self-
modifying code and code execution from within the data
segment for security reasons.

Additionally, binaries which have been modified to ob-
fuscate control flow are not properly rewritten by this tech-
nology. Specifically, this technology relies upon the recur-
sive traversal discovery algorithm, and assumes that CTIs
exhibit normal behavior. For example, it is assumed that both
targets of a conditional branch instruction will always con-
tain valid instructions.

3. Optimizing Target Sets
Section 2 presented an approach for performing static binary
rewriting without relocation information. Though the tech-
nology guaranteed correctness of the rewritten binary, it is
extremely conservative in identifying indirect CTI targets.

Clearly, extraneous targets will lead to increases in code
size. However, they are also disadvantageous to runtime per-
formance by increasing the time required for usage point
translation and limiting the effectiveness of optimizations
by introducing unnecessary control flow edges. To address
these concerns, this section introduces techniques for reduc-
ing the size of indirect CTI target sets through the elimina-
tion of false targets.

3.1 Constant Propagation
Indirect call target discovery via constant propagation is a
technique used by DeSutter et. al. [10]. Some indirect con-
trol transfer targets can be traced to their usage sites by
performing constant propagation (a type of dataflow anal-
ysis). It was discovered that the targets of 92% of indirect
calls could be discovered via constant propagation. How-
ever, these particular results are heavily reliant upon the Al-
pha architecture, where all intermodular calls are made via
indirect CTI. As a result, a vast number of indirect calls have
only a single target. Unfortunately, compilers for other ar-
chitectures, such as x86, tend to introduce indirect calls only
when multiple targets are possible. In these situations, con-
stant propagation alone is not sufficient to fully characterize
the target set.

3.2 Binary Characterization
We have developed a new technique to effectively eliminate
the vast majority of presumed indirect CTI targets. Our tech-
nique, termed Binary Characterization, leverages the restric-
tion that indirect CTI require an absolute address operand,
and that these address operands must appear within the code

and/or data segments. As discussed previously, in a stripped
binary without type information, it is not always possible to
prove whether a data location is an address (and not constant
data). However, it is sometimes possible to to prove that a lo-
cation is not an address. Thus, it is possible to generate a list
of values that may represent addresses. This address list will
be guaranteed to be a superset of the actual list of indirect
CTI targets.

Binary Characterization generates this list of possible ad-
dresses by first constructing a valid address range. The ex-
ecutable provides both the base virtual address and the size
of the code segment. Together, these values form the basis
for the binary’s virtual address range. The code and data seg-
ments are subsequently scanned for values that lie within the
constructed range, taking into account the endianness and
native address size of the underlying instruction set architec-
ture. The result is a list of values guaranteed to contain, at
a minimum, all of the indirect CTI targets. Although the list
may still contain extraneous targets, Binary Characterization
can still eliminate a significant number of potential targets.

Additionally, this list can be further optimized by elim-
inating entries that are definitively known not to be data.
Entries generated from known instruction opcode bytes, or
known direct CTI operands can be eliminated, as we know
for certain that these locations do not represent indirect CTI
operands. Also, those entries which exhibit contradictory
control flow (by pointing to the middle of known instruc-
tions) can be eliminated as well.

It should be noted that this technique is only appropriate
for reducing target sets in those situations where addresses
are not calculated at runtime. Thus, it is appropriate for
indirect calls, but not always for indirect branches, where
jump table implementations can contain runtime-computed
addresses.

3.3 Alias Analysis
Constant propagation is sometimes able to propagate indi-
rect CTI operands directly to their usage sites in rare cases
where the indirect CTI has only a single target. However,
most indirect CTI exist specifically because they contain
multiple targets can cannot be effectively expressed as a di-
rect CTI. In these situations, a more robust analysis is re-
quired for tracing operands to their usage sites.

Indirect CTI operands may be passed through the pro-
gram in a variety of ways including memory, stack, function
arguments, and registers. Alias analysis is capable of trac-
ing operands through these mechanisms. We employ alias
analysis by examining each indirect CTI operand against
each entry in the reduced set of CTI targets provided by
Binary Characterization. This allows for the elimination of
CTI targets that are guaranteed not to alias a particular CTI
operand. In cases where alias analysis discovers that an indi-
rect branch operand must alias a set of targets, those entries
not included in the ’must alias’ set can be eliminated from
the indirect branch’s translator.

Binary Rewriting without Relocation Information 6 2010/11/10

Further optimization is possible in some situations. When
alias analysis discovers a single target that must alias a
particular indirect CTI operand, the indirect CTI can be
promoted to a direct CTI. Additionally, in situations where a
set of targets is known to ’must alias’ an operand, traditional
static address point translation can be used in favor of usage
point translation.

3.4 Indirect Branches
Binary Characterization is not appropriate for the discovery
of indirect branch targets in situations where addresses may
be calculated in the binary. As a result, additional techniques
are necessary for reducing these target sets. One simple
technique is to limit branch targets to within the current
function boundary. This requires establishment of function
boundaries, which can be complicated by the presence of
functions containing multiple entry points.

Another technique, commonly employed by other rewrit-
ers, is to use pattern matching to identify the bounds of jump
tables. Unfortunately, jump table bounds checks are com-
piler specific, so a single pattern does not suffice.

3.5 Function Boundaries
When jump table bounds checking fails, function boundaries
must be established in order to reasonably limit the number
of indirect branch targets. Some rewriting infrastructures
do not attempt to reconstitute function boundaries. Others
rely on symbolic information for the listing of all function
offsets and lengths. Our goal is to reconstitute boundaries
without symbolic information. We assume function bodies
to be contiguous within the binary.

Determining the starting offset of a function is often
straightforward, as it is typically revealed during recursive
traversal as the target of a call instruction. In some cases,
determining the function’s ending offset is also straightfor-
ward. In functions containing no indirect CTI, all of the
instruction bytes are easily discovered statically, and the in-
struction at the greatest file offset is considered to be the end
of the function boundary.

In the case where a function does contain an indirect CTI,
it can be conservatively assumed that the function boundary
ends at the point at which the next function boundary begins.
In some cases, this will result in a function boundary larger
than the actual boundary. However, calculating a conserva-
tively large function boundary serves only to increase the
number of indirect branch targets, and does not compromise
the correctness of the intermediate representation.

Function boundary analysis can be complicated by the
presence of tail calls, which appear as branch instructions
in conjunction with manual stack setup. These masked calls
can be uncovered using platform-specific heuristics [17].

Functions may contain multiple entry points [29]. Our ap-
proach to function boundary determination treats the regions
logically as separate functions (and disassembles them as

such), but allows their file boundaries (for the purposes of
branch target set identification) to overlap.

4. Related Work
Consequent to the advantages of binary rewriting, a number
of binary rewriters, disassemblers, and link-time optimizers
have been designed. Each rewriter can be characterized ac-
cording to the way in which it deals with the challenges of
binary rewriting. Existing tools handle this problem in vari-
ous ways, but their approaches typically fall into several cat-
egories:

Analysis tools. These tools, typcially disassemblers, are
useful for reverse engineering of binaries. They do not nec-
essarily guarantee complete disassembly coverage or even
correctness [16]. In some cases, the tools are not fully auto-
mated, and user input is required [9].

Minimally-invasive rewriters. These rewriters maintain
the original machine code as-is to the greatest extent possi-
ble. This approach largely avoids issues related to instruction
relocation, but supports only minimal transformations such
as peephole optimizations and the insertion of ’trampolines’
to jump into and out of instrumentation blocks [1, 2].

Assisted rewriters. These designs, sometimes referred to
as link-time optimizers, rely upon access to additional in-
formation not required for execution and thus, not typically
found in an executable [7, 8, 11–13, 15, 24, 28, 32–34]. Of-
ten, this includes information about symbols and link-time
address calculations (relocation entries). This additional in-
formation allows the rewriter to determine the targets of indi-
rect control transfer instructions, the establishment of func-
tion boundaries, and the disambiguation of code from data.

Dynamic rewriters. These rewriters perform analysis
and transformation at runtime [1, 4, 6, 22, 25, 26, 30]. As
such, they are able to overcome the usual rewriting chal-
lenges by delaying decisions until runtime, at which point
the information required becomes clearly evident. As a ben-
efit, these types of rewriters need not rely upon any addi-
tional information in order to successfully rewrite a binary.
Unfortunately, these rewriters tend to suffer from signifi-
cant runtime overhead, especially when performing complex
transformations. For example, some dynamic rewriters in-
tercept the application’s execution at most indirect control
transfers in order to ensure that the target has been rewrit-
ten. As a result, even without applying any transformations,
reported overheads range from 20% for DynamoRIO [6] to
54% for PIN [22]. Similar to our approach, these rewriters
perform indirect CTI translation at the usage site. However,
because disassembly is performed at runtime, these rewrit-
ers need not identify all possible indirect targets prior to ex-
ecution. A variety of implementations have focused on per-
forming dynamic CTI translation within the context of a dy-
namic rewriter, as the rate of indirect CTI execution has been
strongly correlated to the overall overhead of rewriting [18].

Binary Rewriting without Relocation Information 7 2010/11/10

Despite its tremendous potential, binary rewriting tech-
nology has yet to gain widespread use. This is perhaps due
to the respective limitations of the currently available ap-
proaches: no guarantee of correctness, limited transforma-
tion potential, a requirement for additional information, and
prohibitive runtime overheads.

5. Implementation

Figure 1. SecondWrite Design

The technologies presented herein have been imple-
mented in a binary rewriter known as SecondWrite. Sec-
ondWrite integrates binary rewriting technology with the
LLVM [21] compiler by disassembling input binaries into
LLVM’s intermediate representation (IR). As shown in Fig-
ure 1, the original binary is disassembled into an incomplete
IR along with supporting metadata. This result is passed
through a series of generic and binary aware analyses and
transformations, such as alias analysis, constant propagation,
and usage point translator refinement (target set reduction).
The resultant IR is subsequently sent through code genera-
tion, where the IR undergoes a process of (re)compilation,
including instruction selection and register allocation. Fi-
nally, the rewritten object code, along with specific layout
restrictions (specifying where the orginal copies of the code
and data segments should be located in the rewitten binary)
are provided to the linker in order to produce the output
binary.

Figure 2 shows a simplified overview of an example
rewritten binary. The top portion of the figure illustrates that
the original code and data segments are retained in the output
binary. The rewritten portion of the binary contains a vari-
ety of function types. Function A represents those functions
not containing any indirect branches (and thus no specula-
tive sequences). Function A does contain an indirect call,

Figure 2. Example of a Rewritten Binary

which is illustrated by the edge to translator X, which redi-
rects control flow to either B or C. Function B contains only
speculative code, and is therefore considered to be a spec-
ulative function. Function D illustrates the possibility of a
regular function containing speculative sequences and their
associated branch translators. Finally, the rewritten binary
itself reserves the right to introduce new data into the data
segment.

6. Results
We gathered results from a subset of SPEC 2006 bench-
marks: bzip2, equake 6, hmmer, lbm, libquantum, mcf, and
sjeng, the largest of which is hmmer (35,992 lines of C
code). Each benchmark was compiled with gcc-4.3 at op-
timization levels 0 and 3, to produce 14 input binaries. Each
rewritten binary was verified for correctness and tested for
performance via the associated SPEC dataset.

benchmark total indir branch indir call
bzip2 20,900 2 (0.01%) 20 (0.10%)
equake 6738 0 (0.00%) 0 (0.00%)
hmmer 85,543 28 (0.03%) 9 (0.01%)
lbm 7,415 0 (0.00%) 0 (0.00%)
libquantum 13,579 0 (0.00%) 0 (0.00%)
mcf 3,159 0 (0.00%) 0 (0.00%)
sjeng 31,126 16 (0.05%) 1 (0.00%)

Figure 3. Number of total, indirect branch and indirect call
instructions in non-optimized (O0) benchmarks.

6 equake was taken from the SPEC OMP 2001 benchmark suite

Binary Rewriting without Relocation Information 8 2010/11/10

benchmark total indir branch indir call
bzip2 14,542 2 (0.01%) 20 (0.14%)
equake 7,316 0 (0.00%) 0 (0.00%)
hmmer 72,198 21 (0.03%) 9 (0.01%)
lbm 3,250 0 (0.00%) 0 (0.00%)
libquantum 12,274 0 (0.00%) 0 (0.00%)
mcf 3,124 0 (0.00%) 0 (0.00%)
sjeng 28,569 14 (0.05%) 1 (0.00%)

Figure 4. Number of total, indirect branch and indirect call
instructions in optimized (O3) benchmarks.

We examined each binary for the prevalence of indi-
rect CTI. Figure 3 displays the number of instructions for
each input benchmark, when compiled without optimization.
Also shown are the number of indirect branches and calls, as
well as their respective percentage of the overall instruction
count. Figure 4 displays the same information for the bench-
marks when compiled with optimization.

These figures serve to first illustrate that although Sec-
ondWrite is still an early prototype, it is currently able to
rewrite binaries with sizable instruction counts. Secondly,
these figures highlight the relatively small percentage of in-
direct CTI that are found in C-based programs. Notably,
only bzip2, hmmer, and sjeng actually contained any indi-
rect CTIs. Future work will examine the effect of our ap-
proach on benchmarks with a larger percentage of indirect
CTI, such as those compiled containing virtual tables (C++),
and exception handlers.

benchmark O0 total (reduced) O3 total (reduced)
bzip2 124 (3) 83 (3)
equake 42 (0) 39 (0)
hmmer 601 (23) 549 (23)
lbm 36 (0) 33 (0)
libquantum 143 (3) 125 (3)
mcf 42 (0) 41 (0)
sjeng 180 (9) 164 (9)

Figure 5. Function Counts and Possible Indirect CTI Tar-
gets (Binary Characterization Target Set Reduction)

Figure 5 shows the number of functions discovered in
each benchmark along with the number identified by binary
characterization as possible targets of indirect CTI. Note that
binary characterization is quite effective in reducing the size
of the overall target set. In fact, for those binaries containing
indirect calls, binary characterization was able to reduce the
target set by an average of over 96%.

Our rewriting technologies enables arbitrarily complex
compiler-level transformations to be applied statically to bi-
naries. We demonstrate this achievement by applying a suite
of common optimizations via LLVM during our rewriting
process. The resultant execution speeds of the rewritten,

Figure 6. Runtime vs. Original

(re)optimized binaries versus the original input is shown in
figure 6, with lower numbers indicating better performance.

Note that we drastically optimize the set of O0 binaries,
resulting in an average speedup of 27%. SecondWrite was
also able to largely maintain the performance of the opti-
mized input benchmarks as well, producing an average slow-
down of only 7%. The slowdowns experienced by some
rewritten binaries are largely related to current limitations
SecondWrite’s static analysis capabilities. In particular, al-
gorithms to identify function arguments and promote regis-
ter spills are still very conservative.

Our recompilation technology strives to serve as a plat-
form to enable end-user optimizations and transformations.
As such, it does not aim to be optimization technology in
and of itself, but merely to provide an extremely versatile
platform with non-prohibitive overheads upon which to ap-
ply compiler-level transformations. To that end, other re-
searchers have leveraged this technology to implement au-
tomatic parallelization on binaries, realizing an average
speedup of 5.1 for a suite of dense-matrix programs when
transforming a serial binary for execution on an 8-core ma-
chine [20].

7. Conclusion
We have presented a comprehensive scheme for disassem-
bly, analysis, and layout, leveraging existing and newly
developed technologies, that overcomes the limitations of
current rewriters. By removing the requirement for reloca-
tion entries, this technology may serve as a future platform
for providing complex transformational capabilities to end-
users at reasonable overheads.

References
[1] Dynamic Program Instrumentation for Scalable Performance

Tools, May 1994. Scalable High Performance Computing
Conference.

[2] Instrumentation and Optimization of Win32/Intel Executables
Using Etch, August 1997. USENIX Windows NT Workshop.

[3] A detailed description of the Data Execution Prevention
(DEP) feature in Windows XP Service Pack 2, Windows XP

Binary Rewriting without Relocation Information 9 2010/11/10

Tablet PC Edition 2005, and Windows Server 2003. Techni-
cal Report 875352, Microsoft Corporation, September 2006.
http://support.microsoft.com/kb/875352.

[4] DynInst Programmer’s Guide, Release 5.1, March 2007. URL
www.dyninst.org.

[5] M. Abadi, M. Budiu, Úlfar Erlingsson, and J. Lig-
atti. Control-flow integrity. In CCS ’05: Proceed-
ings of the 12th ACM conference on Computer and com-
munications security, pages 340–353, New York, NY,
USA, 2005. ACM Press. ISBN 1-59593-226-7. doi:
http://doi.acm.org/10.1145/1102120.1102165.

[6] D. Bruening. Efficient, Transparent, and Comprehensive Run-
time Code Manipulation. PhD thesis, Massachusetts Institute
of Technology, 2004.

[7] R. Cohn, D. Goodwin, P. G. Lowney, and N. Rubin. Spike: an
optimizer for alpha/nt executables. In NT’97: Proceedings of
the USENIX Windows NT Workshop on The USENIX Windows
NT Workshop 1997, pages 17–24, Berkeley, CA, USA, 1997.
USENIX Association.

[8] R. S. Cohn, D. W. Goodwin, and P. G. Lowney. Optimizing
alpha executables on windows nt with spike. Digital Tech. J.,
9(4):3–20, 1998. ISSN 0898-901X.

[9] IDA Pro Disassembler. DataRescue, Belgium, 2007.

[10] B. De Sutter, B. De Bus, K. De Bosschere, P. Keyngnaert, and
B. Demoen. On the static analysis of indirect control transfers
in binaries. In H. Arabnia, editor, Proceedings of the Inter-
national Conference on Parallel and Distributed Processing
Techniques and Applications, volume 2, pages 1013–1019,
Las Vegas, 6 2000. CSREA Press.

[11] B. De Sutter, B. De Bus, and K. De Bosschere. Link-
time binary rewriting techniques for program compaction.
ACM Transactions on Programming Languages and Systems
(TOPLAS), 27(5):882–945, September 2005.

[12] B. De Sutter, L. Van Put, D. Chanet, B. De Bus, and
K. De Bosschere. Link-time compaction and optimization of
ARM executables. ACM Transactions on Embedded Comput-
ing Systems, 6(1), February 2007.

[13] A. Edwards, H. Vo, A. Srivastava, and A. Srivastava. Vulcan
binary transformation in a distributed environment. Technical
report, 2001.

[14] U. Erlingsson. The inlined reference monitor approach to
security policy enforcement. PhD thesis, 2004. Adviser-Fred
B. Schneider.

[15] A. Eustace and A. Srivastava. Atom: a flexible interface
for building high performance program analysis tools. In
TCON’95: Proceedings of the USENIX 1995 Technical Con-
ference Proceedings on USENIX 1995 Technical Confer-
ence Proceedings, pages 25–25, Berkeley, CA, USA, 1995.
USENIX Association.

[16] Objdump. Free Software Foundation, Boston, MA, USA,
2007.

[17] L. C. Harris and B. P. Miller. Practical analysis
of stripped binary code. SIGARCH Comput. Archit.
News, 33(5):63–68, 2005. ISSN 0163-5964. doi:
http://doi.acm.org/10.1145/1127577.1127590.

[18] J. D. Hiser, D. Williams, W. Hu, J. W. Davidson, J. Mars, and
B. R. Childers. Evaluating indirect branch handling mecha-
nisms in software dynamic translation systems. Code Gener-
ation and Optimization, IEEE/ACM International Symposium
on, 0:61–73, 2007.

[19] C. M. Huneycutt, J. B. Fryman, and K. M. Mackenzie. Soft-
ware caching using dynamic binary rewriting for embedded
devices. In ICPP ’02: Proceedings of the 2002 Interna-
tional Conference on Parallel Processing (ICPP’02), page
621, Washington, DC, USA, 2002. IEEE Computer Society.
ISBN 0-7695-1677-7.

[20] A. Kotha, K. Anand, M. Smithson, G. Yellareddy, and
R. Barua. Automatic parallelization in a binary rewriter. In
MICRO 43: Proceedings of the 43rd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, Atlanta, GA,
USA, 2010. ACM.

[21] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In Proceed-
ings of the International Symposium on Code Generation and
Optimization (GCO), pages 75–87, 2004.

[22] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. Reddi, and K. Hazelwood. Pin: building cus-
tomized program analysis tools with dynamic instrumenta-
tion. In Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation, vol-
ume 40, pages 190–200. ACM New York, NY, USA, 2005.

[23] J. Marathe, F. Mueller, T. Mohan, B. R. de Supinski, S. A. Mc-
Kee, and A. Yoo. Metric: tracking down inefficiencies in the
memory hierarchy via binary rewriting. In CGO ’03: Proceed-
ings of the international symposium on Code generation and
optimization, pages 289–300, Washington, DC, USA, 2003.
IEEE Computer Society. ISBN 0-7695-1913-X.

[24] R. Muth, S. K. Debray, S. A. Watterson, and K. D. Bosschere.
Alto: A link-time optimizer for the compaq alpha. Software -
Practice and Experience, 31(1):67–101, 2001.

[25] S. Nanda, W. Li, L.-C. Lam, and T. cker Chiueh. Bird:
Binary interpretation using runtime disassembly. In CGO
’06: Proceedings of the International Symposium on Code
Generation and Optimization, pages 358–370, Washington,
DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-
2499-0. doi: http://dx.doi.org/10.1109/CGO.2006.6.

[26] N. Nethercote and J. Seward. Valgrind: a framework for
heavyweight dynamic binary instrumentation. SIGPLAN Not.,
42(6):89–100, 2007. ISSN 0362-1340.

[27] M. Prasad and T. Chiueh. A binary rewriting defense against
stack based overflow attacks. In Proceedings of the USENIX
Annual Technical Conference, San Antonio, TX, June 2003.

[28] B. Schwarz, S. Debray, and G. Andrews. Plto: A link-time
optimizer for the intel ia-32 architecture. In Proc. 2001 Work-
shop on Binary Translation (WBT-2001), Sept. 2001.

[29] B. W. Schwarz. Post Link-Time Optimization on the Intel IA-
32 Architecture. PhD thesis, University of Arizona, Tucson,
AZ, May 2002.

[30] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. Davidson,
and M. Soffa. Retargetable and reconfigurable software dy-
namic translation. In Proceedings of the international sympo-

Binary Rewriting without Relocation Information 10 2010/11/10

sium on Code generation and optimization: feedback-directed
and runtime optimization, pages 36–47. IEEE Computer So-
ciety Washington, DC, USA, 2003.

[31] E. G. Sirer, R. Grimm, A. J. Gregory, and B. N. Ber-
shad. Design and implementation of a distributed vir-
tual machine for networked computers. SIGOPS Oper.
Syst. Rev., 33(5):202–216, 1999. ISSN 0163-5980. doi:
http://doi.acm.org/10.1145/319344.319165.

[32] A. Srivastava and D. W. Wall. OM: A practical system for
intermodule code optimization at link-time. Journal of Pro-
gramming Languages, 1(1):1–18, December 1992.

[33] B. D. Sutter, S. Debray, , and B. D. Bus. Squeeze
0.3.4-Ghent for Tru64Unix User’s Manual. URL
http://www.cs.arizona.edu/projects/squeeze/.

[34] L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and
K. De Bosschere. Diablo: a reliable, retargetable and extensi-
ble link-time rewriting framework. In Proceedings of the 2005
IEEE International Symposium On Signal Processing And In-
formation Technology, pages 7–12, Athens, December 2005.
IEEE.

Binary Rewriting without Relocation Information 11 2010/11/10

